Skip to main content

How We Think Before We Speak: Making Sense Of Sentences

We engage in numerous discussions throughout the day, about a variety of topics, from work assignments to the Super Bowl to what we are having for dinner that evening. We effortlessly move from conversation to conversation, probably not thinking twice about our brain's ability to understand everything that is being said to us. How does the brain turn seemingly random sounds and letters into sentences with clear meaning?

In a new report in Current Directions in Psychological Science, a journal of the Association for Psychological Science, psychologist Jos J.A. Van Berkum from the Max Planck Institute in The Netherlands describes recent experiments using brain waves to understand how we are able to make sense of sentences.

In these experiments, Van Berkum and his colleagues examined Event Related Potentials (or ERPs) as people read or heard critical sentences as part of a longer text, or placed in some other type of context. ERPs are changes in brain activity that occur when we hear a certain stimulus, such as a tone or a word. Due to their speed, ERPs are useful for detecting the incredibly fast processes involved in understanding language.

Analysis of the ERPs has consistently indicated just how quickly the brain is able to relate unfolding sentences to earlier ones. For example, Van Berkum and colleagues have shown that listeners only need a fraction of a second to determine that a word is out of place, given what the wider story is about. As soon as listeners hear an unexpected word, their brain generates a specific ERP, the N400 effect (so named because it is a negative deflection peaking around 400 milliseconds). And even more interesting, this ERP will usually occur before the word is even finished being spoken.

In addition to the words themselves, the person speaking them is a crucial component in understanding what is being said. Van Berkum also saw an N400 effect occurring very rapidly when the content of a statement being spoken did not match with the voice of the speaker (e.g. "I have a large tattoo on my back" in an upper-class accent or "I like olives" in a young child's voice). These findings suggest that the brain very quickly classifies someone based on what their voice sounds like and also makes use of social stereotypes to interpret the meaning of what is being said. Van Berkum speculates that "the linguistic brain seems much more 'messy' and opportunistic than originally believed, taking any partial cue that seems to bear on interpretation into account as soon as it can."

But how does the language brain act so fast? Recent findings suggest that, as we read or have a conversation, our brains are continuously trying to predict upcoming information. Van Berkum suggests that this anticipation is a combination of a detailed analysis about what has been said before with taking 'quick-and-dirty' shortcuts to figure out what, most likely, the next bit of information will be.

One important element in keeping up with a conversation is knowing what or whom speakers are actually referring to. For example, when we hear the statement, "David praised Linda because. . .," we expect to find out more about Linda, not David. Van Berkum and colleagues showed that when listeners heard "David praised Linda because he. . .," there was a very strong ERP effect occurring with the word "he," of the type that is also elicited by grammatical errors. Although the pronoun is grammatically correct in this statement, the ERP occurred because the brain was just not expecting it. This suggests that the brain will sometimes ignore the rules of grammar when trying to comprehend sentences.

These findings reveal that, as we make sense of an unfolding sentence, our brains very rapidly draw upon a wide range of information, including what was stated previously and who the speaker is, in helping us understand what is being said to us. Sentence understanding is not just about diligently combining stored word meanings. The brain rapidly throws in everything it knows, and it is always looking ahead.

Post a Comment

Popular posts from this blog

Bottled Water Carries Hidden Cost to Earth

Good for You, Bad for Mother Earth? | $1.79 might seem like a small price to pay for a bottle of water. But it costs the Earth far more than that.

Compared to a liter of tap water, producing a liter of bottled water requires as much as 2,000 times more energy, according to the first analysis of its kind. The study also found that our nation's bottled water habit sucked up the equivalent of 32 to 54 million barrels of oil last year.

"The bottom line is that we should understand better the implications of our choices," said Peter Gleick, president of the Pacific Institute for Studies in Development, Environment, and Security in Oakland, Calif. "It suggests more ways to reduce energy use than maybe we otherwise think of."

Bottled water is a big business that is rapidly getting bigger. From 1976 to 2007, the average amount of bottled water drunk per person per year in the United States jumped from about 6 liters (1.6 gallons) to 116 liters (30.6 gallons).

In 2007, …


Air pollution can cause serious health problems. Rarely, it can even kill people — and we’re not exaggerating. That’s why we care so much about the laws that protect us from air pollution. Read on to learn more about the specific parts of our bodies that are affected by air pollution. Air pollution can be made of tiny particles or gases, and these get into your body when you breathe. Different types of air pollution do different things inside your body. Air pollution can directly irritate the eyes, nose, and throat, before it even gets into the lungs. It can cause runny nose, itchy eyes, and scratchy throat. LUNGS When you breathe in, air moves through your nose or mouth, down your throat into your trachea, and then into your lungs. Pollution can irritate the airways. When that happens, muscles around the bronchi get tight; the lining of the bronchi swell; and the bronchi produce excess mucous. When the airways are constricted, it b…

Hazardous Waste

A hazardous waste is a waste with a chemical composition or other properties that make it capable of causing illness, death, or some other harm to humans and other life forms when mismanaged or released into the environment. PLEASE NOTE This new page is part of our Hazardous Waste Management Program web page update process and is under construction. The links to the left will take you to the main Hazardous Waste page, as well as the general category pages, and the Related Links are those links related to the content on the page.  longer be available.  DEFINING HAZARDOUS WASTE A waste is a hazardous waste if it is a listed waste, characteristic waste, used oil and mixed wastes. Specific procedures determine how waste is identified, classified, listed, and delisted. TYPES OF HAZARDOUS WASTE Hazardous waste is divided into different types (e.g., universal waste) or categories, including RCRA hazardous waste and non-RCRA hazardous waste. Properly categorizing a hazardous waste is necessary f…