Skip to main content

Full of powerful wind? Bury it in the ground for later

By Glenn Fleishman

A not-so-new notion is gaining traction for storing power generated at nonpeak times: compress regular air into underground chambers, then retrieve it later to spin turbines.

Wind power can be generated any time the wind is blowing at the same cost day and night. Because there's no efficient way to store power when it's generated but not needed, utilities and wind-power farms around the world are already having to slough off power as wind-based generation scales to something beyond scattered projects.

The New York Times blogs about a variety of efforts focused on using the excess electricity from some wind systems to compress air into sealed underground chambers, such as those left behind from various kinds of pumping and mining operations. The compressed air has potential energy that can be released later.

The current generation of compressed air energy storage (CAES) systems have to burn natural gas to heat the compressed air before the air can be used to turn turbines and recapture a good fraction of the energy used in compression. Future CAES plants are planned that skip the natural-gas input, shunting waste head from compression into the decompression process.

Certain parts of the world are better suited to using CAES for energy storage. In Ontario, the Toronto Star reported a few days ago that there are 50,000 wells in the province of which just 2,000 are still in use. Some of these wells are used for a different kind of stored energy: compressed natural gas, pumped and held until demand requires its release. Others could be used to store compressed air.

The comments on the Times blog entry are particularly interesting, with the author of a significant paper on the technology chiming in, along with a wind industry representative named Michael Goggin. Goggin wrote that storage is unnecessary because other types of generation can be shut down on demand in favor of wind—water can be held behind a dam for later release or natural gas held in pipes for later burning.

But that's surprisingly idealistic. In the real world, the cheapest power is used first. If wind power is generated during nonpeak times, less money is paid for it, even with the subsidies in effect in many countries to encourage wind generation. Goggin's scenario works only if the costs are the same among different forms of generation, or a single utility owns the various forms of generation and chooses a more-expensive method to obtain carbon credits or meet greenhouse gas emission goals.

This view also requires that transmission systems are capable of moving wind power at nonpeak times precisely to where it's best needed. As Sandia National Laboratories researcher Georgianne Peek said (in a press release about an Iowa CAES project) in June 2008, "The wind blows in some areas when electricity is not needed or where the transmission system can't accept all of the energy."

If wind power can be offset from nonpeak to peak times, then it becomes more viable, and thus sees greater use. This could balance green-power principles (more wind generation) with market motivations (lowest cost).

While batteries can also be used to store energy, they are expensive to make, use hazardous and toxic metals and compounds, and can't hold energy for very long. They're useful in specific situations, like home storage and backup with solar systems. Peak shifting, in which power generation is used during off hours to be reclaimed in some form during more expensive daytime uses, involves everything from next-generation flywheels to making ice power air conditioning during the day to providing incentives and for future electric-car owners to charge their cars primarily overnight
Post a Comment

Popular posts from this blog

Bottled Water Carries Hidden Cost to Earth

Good for You, Bad for Mother Earth? | $1.79 might seem like a small price to pay for a bottle of water. But it costs the Earth far more than that.

Compared to a liter of tap water, producing a liter of bottled water requires as much as 2,000 times more energy, according to the first analysis of its kind. The study also found that our nation's bottled water habit sucked up the equivalent of 32 to 54 million barrels of oil last year.

"The bottom line is that we should understand better the implications of our choices," said Peter Gleick, president of the Pacific Institute for Studies in Development, Environment, and Security in Oakland, Calif. "It suggests more ways to reduce energy use than maybe we otherwise think of."

Bottled water is a big business that is rapidly getting bigger. From 1976 to 2007, the average amount of bottled water drunk per person per year in the United States jumped from about 6 liters (1.6 gallons) to 116 liters (30.6 gallons).

In 2007, …


Air pollution can cause serious health problems. Rarely, it can even kill people — and we’re not exaggerating. That’s why we care so much about the laws that protect us from air pollution. Read on to learn more about the specific parts of our bodies that are affected by air pollution. Air pollution can be made of tiny particles or gases, and these get into your body when you breathe. Different types of air pollution do different things inside your body. Air pollution can directly irritate the eyes, nose, and throat, before it even gets into the lungs. It can cause runny nose, itchy eyes, and scratchy throat. LUNGS When you breathe in, air moves through your nose or mouth, down your throat into your trachea, and then into your lungs. Pollution can irritate the airways. When that happens, muscles around the bronchi get tight; the lining of the bronchi swell; and the bronchi produce excess mucous. When the airways are constricted, it b…

Hazardous Waste

A hazardous waste is a waste with a chemical composition or other properties that make it capable of causing illness, death, or some other harm to humans and other life forms when mismanaged or released into the environment. PLEASE NOTE This new page is part of our Hazardous Waste Management Program web page update process and is under construction. The links to the left will take you to the main Hazardous Waste page, as well as the general category pages, and the Related Links are those links related to the content on the page.  longer be available.  DEFINING HAZARDOUS WASTE A waste is a hazardous waste if it is a listed waste, characteristic waste, used oil and mixed wastes. Specific procedures determine how waste is identified, classified, listed, and delisted. TYPES OF HAZARDOUS WASTE Hazardous waste is divided into different types (e.g., universal waste) or categories, including RCRA hazardous waste and non-RCRA hazardous waste. Properly categorizing a hazardous waste is necessary f…