Skip to main content
A new fiber-optic laser system can measure wind speed and direction up to 1000 meters in front of a wind turbine, giving the massive machines enough precious seconds to proactively adapt to gusts and sudden changes in wind direction. The device, developed by Catch the Wind, a startup based in Manassas, VA, could improve the efficiency of wind turbines and keep them from breaking down.

The device could help lower the cost of renewable electricity from wind. Wind turbines lose roughly 1 percent of their operating efficiency for every degree their blades are out of alignment with the oncoming wind. Catch the Wind claims that its laser system can boost turbine power output by 10 percent by improving orientation accuracy. The pitch of the blades can also be adjusted in advance of the wind to reduce wear and tear on turbine gearbox components and blades, lowering repair and maintenance costs by up to 10 percent and extending the operating life of a wind farm, the company says.

John Kourtoff, chief executive officer of offshore wind developer Trillium Power, calls Catch the Wind's approach "conceptually intriguing" if it can both reduce wind-farm costs and increase revenues. "On the face of it, it makes sense. It would be advantageous for us," he says. "But I'd have to see real field data."

Current wind-energy measurement systems--both mechanical anemometers and more advanced LIDAR (light detecting and ranging) devices--are used primarily to determine if a location is suitable for a wind farm. The systems are also kept as part of on-site weather stations used for longer-term wind forecasting. Real-time data can also be gathered by mounting a small anemometer on the back of a turbine's nacelle, Kourtoff says. The problem with this setup is that the air is so disturbed after passing by the turbine blades that measurements are often skewed and unreliable. Also, the turbine can only respond to wind changes after its blades have been hit, leaving them vulnerable for a few seconds to a range of punishing forces caused by wind shear, gusts, and turbulence.
Post a Comment

Popular posts from this blog

Bottled Water Carries Hidden Cost to Earth

Good for You, Bad for Mother Earth? | $1.79 might seem like a small price to pay for a bottle of water. But it costs the Earth far more than that.

Compared to a liter of tap water, producing a liter of bottled water requires as much as 2,000 times more energy, according to the first analysis of its kind. The study also found that our nation's bottled water habit sucked up the equivalent of 32 to 54 million barrels of oil last year.

"The bottom line is that we should understand better the implications of our choices," said Peter Gleick, president of the Pacific Institute for Studies in Development, Environment, and Security in Oakland, Calif. "It suggests more ways to reduce energy use than maybe we otherwise think of."

Bottled water is a big business that is rapidly getting bigger. From 1976 to 2007, the average amount of bottled water drunk per person per year in the United States jumped from about 6 liters (1.6 gallons) to 116 liters (30.6 gallons).

In 2007, …

HOW AIR POLLUTION HARMS YOUR BODY

HOW AIR POLLUTION HARMS YOUR BODY  DOWNLOAD BROCHURE
Air pollution can cause serious health problems. Rarely, it can even kill people — and we’re not exaggerating. That’s why we care so much about the laws that protect us from air pollution. Read on to learn more about the specific parts of our bodies that are affected by air pollution. Air pollution can be made of tiny particles or gases, and these get into your body when you breathe. Different types of air pollution do different things inside your body. Air pollution can directly irritate the eyes, nose, and throat, before it even gets into the lungs. It can cause runny nose, itchy eyes, and scratchy throat. LUNGS When you breathe in, air moves through your nose or mouth, down your throat into your trachea, and then into your lungs. Pollution can irritate the airways. When that happens, muscles around the bronchi get tight; the lining of the bronchi swell; and the bronchi produce excess mucous. When the airways are constricted, it b…